0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulations of Unsteady Valve Systems

[+] Author Affiliations
V. Ahuja, A. Hosangadi, P. A. Cavallo, R. J. Ungewitter, J. D. Shipman

Combustion Research and Flow Technology, Inc., Pipersville, PA

Paper No. FEDSM2005-77447, pp. 99-106; 8 pages
doi:10.1115/FEDSM2005-77447
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

The safe and reliable operation of industrial facilities and high pressure test stands for engine and component testing is largely dependent on the smooth performance of control valves. However, such valves frequently experience pressure oscillations from hydrodynamic instabilities, cavitation and unsteady valve operation. In this paper, we present a series of high fidelity computational simulations of control valves primarily to understand the physics associated with the dominant instability modes. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics was used to carry out the simulations. We discuss the methodology in detail with the example of transient analyses of a gaseous hydrogen control valve and capture the fluid dynamic instability that results from valve operation. Additionally, we provide detailed analyses of a modal instability that is observed in the operation of a pressure regulator valve. In both cases, the instabilities are not localized and manifest themselves as a system wide phenomena leading to oscillations in mass flow and/or undesirable chatter.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In