Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Analysis of a Pressure Compensated Flow Control Valve

[+] Author Affiliations
Minter Cheng

Feng Chia University, Taichung, Taiwan, Republic of China

Paper No. FEDSM2005-77057, pp. 17-25; 9 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


In hydraulic systems, flow control valve is used to regulate the flow of fluid to actuators by adjusting the valve opening. However, the inlet and the outlet pressures of the valve are not always remaining constant. Any change in pressure will alter the flow rate through the valve and alter the actuator speed consequently. Pressure compensated flow control valves are often used in hydraulic systems when accurate speed control is required under varying supply or load pressures. The basic structure of the pressure compensated flow control valve is by incorporating a compensating spool to maintain a constant pressure drop across the metering orifice. Under ideal circumstance, the actuator speed can be constant and controllable, regardless of load or system pressure changes. However, in practical applications, any system or load pressures variations will cause force unbalance on valve compensating spool and affect the control accuracy. The steady and dynamic response of the flow control valve plays an important role on hydraulic system behavior. Therefore, analyzing and understanding of the valve steady and dynamic behaviors is very important. In this study, the steady and dynamic performance of a pressure compensated flow valve is simulated numerically by solving the characteristic equations. The parameters studied in this research are biased spring constant, pre-compressed spring length, spool mass, and the damping orifice characteristics. The simulation results show that the flow force is identified as the key factor to affect the control accuracy. Increasing the spring constant as well as the pre-compressed spring length will increase the steady flow rate and reduce the transient response time. Decreasing the damping orifice opening or the discharge coefficient will increase the transient response time. The spool mass has practically no effect on the flow rate.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In