Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of 3D Flow in Turbomolecular Pump by Direct Simulation Monte Carlo Method

[+] Author Affiliations
S. Wang, H. Ninokata

Tokyo Institute of Technology, Tokyo, Japan

Paper No. FEDSM2005-77364, pp. 1657-1663; 7 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


A Turbomolecular pump (TMP) is one of the key apparatus to produce high and ultrahigh vacuum. It works mainly in the conditions of free molecular and transitional regimes, where the Navier-Stokes equations of continuum gas dynamics can not be correctly applied. In this study, the flow field in single blade row of one stage TMP is investigated by direct simulation Monte Carlo (DSMC) method with a 3D analysis in a rotating reference frame. Considering the Coriolis and centrifugal accelerations, the equations about the molecular velocities and position are deduced on this frame. The VSS model and NTC collision schemes are used to calculate the intermolecular collisions. The diffuse reflection is employed on the molecular reflection from the surfaces of boundary. The transmission probabilities are calculated and applied to analyze the relationship between the outlet pressure and the maximum pressure ratio. The pumping performances between H2 and N2 on the same blade speed and same blade speed ratio are compared and analyzed carefully. The maximum pumping efficiencies on the different blade angles are also calculated. Numerical results show good quantitative agreement with existing experiment data.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In