0

Full Content is available to subscribers

Subscribe/Learn More  >

A Tethered Multiple Oscillating Water Column Wave Energy Device: From Concept to Deployment

[+] Author Affiliations
John Chudley, Y. Ming Dai, Fraser Johnson

University of Plymouth, Plymouth, UK

Paper No. OMAE2002-28061, pp. 737-744; 8 pages
doi:10.1115/OMAE2002-28061
From:
  • ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
  • 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 2
  • Oslo, Norway, June 23–28, 2002
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3612-6 | eISBN: 0-7918-3599-5
  • Copyright © 2002 by ASME

abstract

This paper discusses the research and design methodology employed in the development of a tethered Multiple Oscillating Water Column (MOWC) wave energy device – from concept to deployment. The fundamental aim of the project was the design and deployment of a scaled floating MOWC wave energy device capable of generating physical data from sea trials. The MOWC collector component incorporated oscillating columns connected to a self-rectifying impulse turbine via individual settling chambers. The device has a water draught of 12m and an air draught of 3m. It is of cylindrical design with an overall diameter of 4.4m, displacing 10t The present unit is rated to at 5 kW power output through restrictions of the internal airflows. Research indicates that a full-scale unit 5 times bigger than the scaled device would be capable of generating 500 – 750 kW in a moderately rough sea. The paper addresses the complex problems associated with floating MOWC devices and suggests methods to enable accurate modeling and matching of internal components. Topics discussed include: concept recognition, hydrodynamic motion interaction with OWC, local resource evaluation, turbine selection, power generation and dissipation, moorings, data monitoring, telemetry and performance evaluation. Mathematical simulations and tank testing were used to develop the concept to a stage where an engineering design could be generated. The use of mathematical modelling presented the project with several specific problems that have been highlighted within the paper. Tank testing enabled the project to overcome these difficulties and developed an engineering design tuned to the local wave climate. Initial research has indicated that the combination of individual Oscillating Water Columns (OWC) of different draughts increases the efficiency of this design when compared to a typical single OWC device. Results also indicated that the channeling of individual air masses through a self-rectifying impulse turbine would produce a self-regulated electrical output via phase locking of the individual columns.

Copyright © 2002 by ASME
Topics: Water , Wave energy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In