0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady, 3-Dimensional Flow Measurement Using a Miniature Virtual 4 Sensor Fast Response Aerodynamic Probe (FRAP)

[+] Author Affiliations
A. Pfau, J. Schlienger, A. I. Kalfas, R. S. Abhari

Swiss Federal Institute of Technology, Zurich, Switzerland

Paper No. GT2003-38128, pp. 307-315; 9 pages
doi:10.1115/GT2003-38128
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 1: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3684-3 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

This paper introduces the new fast response aerodynamic probe, which was recently developed at the ETH Zurich. The technique provides time-resolved, three-dimensional flow measurements using the virtual four sensor technique. The concept and the evaluation of the virtual four sensor probe is discussed in detail. The basic results consist of yaw and pitch flow angles as well as the total and static pressure. They combine to form the unsteady, three dimensional flow vector. The outer diameter of the cylindrical probe head was miniaturized to 0.84mm, hence probe blockage effects as well as dynamic lift effects are reduced. The shape of the probe head was optimized in view of the manufacturing process as well as aerodynamic considerations. The optimum geometry for pitch sensitivity was found to be a cylindrical surface with the axis perpendicular to the probe shaft. The internal design of the probes led to a sensor cavity eigenfrequency of 44kHz for the yaw sensitive and 34kHz for the pitch sensitive probe. Data acquisition is done with a fully automated traversing system, which moves the probe within the test rig and samples the signal with a PC-based A/D-board. An error analysis implemented into the data reduction routines revealed acceptable accuracy for flow angles as well as pressures for many turbomachinery flows. Depending on the dynamic head of the application the yaw angle is accurate within ±0.35° and pitch angle within ±0.7°. In the final section, a comparison of time averaged results to five hole probe measurements is discussed. The advantages of the new probe, beside its unique smallness, are the complete unsteady kinematic information and the improved recording of unsteady total pressure measurement as it is pointed out in a comparison against a 2D virtual three sensor probe.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In