0

Full Content is available to subscribers

Subscribe/Learn More  >

An Inverse-Design Method for Centrifugal Pump Impellers

[+] Author Affiliations
R. W. Westra, N. P. Kruyt, H. W. M. Hoeijmakers

University of Twente, Enschede, The Netherlands

Paper No. FEDSM2005-77283, pp. 1257-1264; 8 pages
doi:10.1115/FEDSM2005-77283
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

The development of an inverse-design method for the impellers of centrifugal pumps is presented. The flow inside the impeller channel is assumed to be irrotational, inviscid and incompressible. With the inverse-design method infinitely-thin impeller blades can be designed for a given meridional geometry and design conditions. The main design parameter is the mean-swirl distribution, which is specified from leading edge to trailing edge and from hub to shroud. The flow in the impeller channel is solved using the Finite Element Method, employing the mean-swirl distribution as a boundary condition. The blade shape is changed iteratively until the blade impenetrability condition is fulfilled. The method has been verified by considering a case for which an analytical solution is available and by reconstruction of an existing geometry, with known characteristics, using the inverse-design method. As an application of the method a mixed-flow impeller has been designed and the effect of changing the mean-swirl distribution on the resulting blade shape is clearly demonstrated.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In