Full Content is available to subscribers

Subscribe/Learn More  >

Wave Crest Sensor Intercomparison Study: An Overview of WACSIS

[+] Author Affiliations
George Z. Forristall

Shell Global Solutions International B.V., Rijswijk, The Netherlands

Stephen F. Barstow

OCEANOR, Trondheim, Norway

Harald E. Krogstad

NTNU, Trondheim, Norway

Marc Prevosto

IFREMER, Plouzane, France

Paul H. Taylor

University of Oxford, Oxford, UK

Peter Tromans

Peter Tromans Engineering, Den Haag, The Netherlands

Paper No. OMAE2002-28438, pp. 451-461; 11 pages
  • ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
  • 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 2
  • Oslo, Norway, June 23–28, 2002
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3612-6 | eISBN: 0-7918-3599-5
  • Copyright © 2002 by ASME


The Wave Crest Sensor Intercomparison Study (WACSIS) was designed as a thorough investigation of the statistical distribution of crest heights. Measurements were made in the southern North Sea during the winter of 1997–1998 from the Meetpost Noordwijk in 18 m water depth. The platform was outfitted with several popular wave sensors, including Saab and Marex radars, an EMI laser, a Baylor wave staff and a Vlissingen step gauge. Buoys were moored nearby to obtain directional spectra. Two video cameras viewed the ocean under the wave sensors and their signals were recorded digitally. The data analysis focused on comparisons of the crest height measurements from the various sensors and comparisons of the crest height distributions derived from the sensors and from theories. Some of the sensors had greater than expected energy at high frequencies. Once the measurements were filtered at 0.64 Hz, the Baylor, EMI and Vlissingen crest height distributions matched quite closely, while those from the other sensors were a few percent higher. The Baylor and EMI crest distributions agreed very well with the statistics from second order simulations, while previous parameterizations of the crest height distribution were generally too high. We conclude that crest height distributions derived from second order simulations can be used with confidence in engineering calculations. The data were also used in investigations of crest and trough shapes and the joint height/period distribution.

Copyright © 2002 by ASME
Topics: Sensors , Waves



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In