0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of a Mixed Flow Turbofan Performance Model in the Sub-Idle Operating Range

[+] Author Affiliations
Claus Riegler, Michael Bauer, Holger Schulte

MTU Aero Engines GmbH, Munich, Germany

Paper No. GT2003-38223, pp. 83-90; 8 pages
doi:10.1115/GT2003-38223
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 1: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3684-3 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

During turbofan development programs the evaluation of steady-state and transient engine performance is usually achieved by applying full thermodynamic engine models at least in the operating range between idle and maximum power conditions, but more recently also in the sub-idle operating range, e.g. for steady-state windmilling behavior and for starting, relight and shut down scenarios. The paper describes the setup, and in more detail the validation, of a full thermodynamic engine model for a two-spool mixed flow afterburner turbofan which is capable to run from maximum power down to zero speed and zero flow conditions in steady-state and transient mode. The validation is performed by using the model-based performance analysis procedure called ANSYN even in windmilling operation. Once the steady-state sub-idle model is validated the extension to transient sub-idle capability is achieved by simply adding the effects of rotor moment of inertia of the spools, while heat soakage effects are rather negligible without heat release in the burner. Especially lighting conditions in the burner are produced by such a validated sub-idle model inherently due to reliable data calculated at the burner entry station. The variety of applications of a validated full thermodynamic engine model is large. The performance data delivered is highly reliable and very consistent because the full operating range of the engine is covered with one model, and by appropriate means of speeding up the calculation even real-time capability may be achieved. In the paper synthesized data for an engine dry crank is compared to real engine test data as one typical application.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In