Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Boiling Flows Using an Eulerian Multi-Fluid Model

[+] Author Affiliations
J. Han, D.-M. Wang, D. Filipi

AVL Powertrain Engineering, Inc., Plymouth, MI

Paper No. FEDSM2005-77239, pp. 863-869; 7 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


A mathematical model to simulate boiling flows in industrial applications is presented. Following the Eulerian multifluid framework, separate sets of mass, momentum, and energy conservation equations are solved for liquid and vapor phases, respectively. The interactions between the phases are accounted for by including relevant mass, momentum, heat exchanges and turbulent dispersion effects. Velocity-pressure coupling is achieved through a multiphase version of the SIMPLE method and the standard k-ε turbulence model is employed. In order to validate and assess the accuracy of the boiling model, subcooled nucleate boiling flows in a vertical annular pipe are simulated in the steady-state mode. The computed axial velocities, volume fractions, temperature profiles are compared with available experimental data (Roy et al., ASME J. of Heat Transfer, Vol. 119, 1997). The result obtained by assuming a constant value for the bubble diameter shows a reasonable agreement, but several limitations are observed in the details. A more advanced mathematical model incorporating separate transport equations for the bubble number density and the interfacial area is suggested.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In