0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Prediction of Unsteady Flows Through Turbine Stator-Rotor Channels With Condensation

[+] Author Affiliations
Yasuhiro Sasao, Satoru Yamamoto

Tohoku University, Sendai, Japan

Paper No. FEDSM2005-77205, pp. 855-861; 7 pages
doi:10.1115/FEDSM2005-77205
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

Unsteady transonic flows with condensation through steam turbine stator-rotor channels are numerically predicted by using the numerical method developed by our group. Fundamental equations solved here consist of conservation laws of mixed gas, water vapor, water liquid, and the number density of water droplets, coupled with the momentum equations and the energy equation. Also the shear-stress transport (SST) turbulence model is employed to predict the turbulent quantities. The numerical method is based on the high-order high-resolution finite-difference method. The fourth-order monotone upstream-centered schemes for conservation laws (MUSCL) with the total variation diminishing (TVD) scheme, Roe’s approximate Riemann solver, and the lower-upper symmetric Gauss-Seidel (LU-SGS) scheme are employed in the numerical method. As numerical examples, transonic condensate flows of moist air through a turbine and a compressor cascade channel are first calculated. Also wet-steam turbine stator-rotor cascade channels are calculated assuming homogeneous and heterogeneous condensations.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In