0

Full Content is available to subscribers

Subscribe/Learn More  >

Separation Control of Aero Boundary Layer in Supercavitating Bodies and Its Effect on Pressure Drag Reduction

[+] Author Affiliations
Yasmin Khakpour, Miad Yazdani

Sharif University of Technology, Tehran, Iran

Paper No. FEDSM2005-77008, pp. 731-739; 9 pages
doi:10.1115/FEDSM2005-77008
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

Supercavitation is known as the way of viscous drag reduction for the projectiles, moving in the liquid phase. In recent works, there is distinct investigation between cavitation flow and momentum transfer far away from the cavity surface. In fact such methodologies consider cavitation flow statically, rather than taking dynamic effects of overall flow into account. However, it seems that there is strong connection between overall flow and what takes place in the sheet cavity where a constant pressure distribution is assumed. Thereby, in order to configure the system conditions which may be cause of cavity perturbation and so system oscillation, we need to use proper methodologies in which turbulence shear stress effects and role of their distribution, are suitably come into account. Numerical simulation of supercavitating flows is pursued in this paper. The effect of air injection in the cavity as a means of stabilization is examined. A k-epsilon model is employed for the liquid flow region while a single-fluid two phase model is applied in the cavity region. Comparisons of several conditions exhibits that at very low cavitation numbers, constant pressure assumption fails particularly for gradient shaped profiles and separation is probable if the flow is sufficiently turbulent. Air injection into the NATURALLY FORMED supercavity is found as an effective way to prevent the probable separation and so significant pressure drag reduction up to 70% is observed. In addition, the position of injection plays a major role to control the aero boundary layer and it has to be considered.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In