0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Liquid Jet Breakup Using a Combination of Particle and Grid Methods

[+] Author Affiliations
Eiji Ishii, Toru Ishikawa

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Yoshiyuki Tanabe

Hitachi, Ltd., hitachinaka, Ibaraki, Japan

Paper No. FEDSM2005-77001, pp. 721-730; 10 pages
doi:10.1115/FEDSM2005-77001
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

Fine atomization of the liquid jet from a fuel injector in an automobile engine lowers engine emissions and improves fuel efficiency. The breakup length of liquid films and the lengths of ligaments near the injector outlet after the breakup of liquid films are important parameters for predicting the atomization. These parameters have been predicted mainly using the Eulerian-grid method. (We refer to this as the ‘grid method’.) However, the grid method causes a loss of the liquid film with numerical diffusion, and it requires a large amount of computation time in practical engineering aspect because fine meshes smaller than the ligaments must be used. On the other hand, the particle method, an alternative (particle-based) method for representing the continuum Navier-Stokes equation which can simulate a ligament using a group of particles, does not cause numerical diffusion. However, a large number of particles are needed to simulate the entire computational domain within the injectors. In this study, we have focused on the flow field only near the injector outlet, and have tried to simulate the breakup of liquid films by using groups of particles in the particle method. In the simulation, the particle method was applied only to the liquid film and the grid method was used in other regions to shorten the computation time. Furthermore, we tried to integrate Brackbill’s surface-tension model, which is widely used in the grid method, into the particle method. To evaluate this approach, we compared the breakup lengths obtained for a cylindrical liquid jet in a uniform air stream with measurements done by Arai and Hashimoto; the breakup lengths agreed well with their measurements. We then simulated the breakup of a liquid film near the outlet of a fuel injector used for automobile engine, and found that our hybrid method could simulate the breakup of the liquid film into ligaments.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In