0

Full Content is available to subscribers

Subscribe/Learn More  >

Time-Dependent Simulation of a Swirling Two Phase Flow Using an Anisotropic Turbulent Dispersion Model

[+] Author Affiliations
Justus Lipowsky, Martin Sommerfeld

Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany

Paper No. FEDSM2005-77210, pp. 677-686; 10 pages
doi:10.1115/FEDSM2005-77210
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

Time-dependent simulations of a particle-laden swirl flow in a pipe expansion based on the Euler-Lagrange approach are presented. Two equation and Reynolds Stress Models were used in the calculation of turbulent quantities in the continuous phase. Additional attention was payed to the influence of particle dispersion. The instantaneous fluid velocities seen by the particles was reconstructed by different dispersion models. To come to a time dependant solution for the Euler-Lagrange approach, a quasi-unsteady approach is taken. This results in a calculational scheme where one Eulerian time-step is divided in a number of Lagrangian steps. Particle source term are sampled which represent the influence of the disperse phase on the flow field. which call for additional coupling within one Eulerian time step. The effect of inter-particle collisions on the movement of the disperse phase is accounted for using a stochastic inter-particle collision model. Special interest of this study was the formation of dust ropes which are observed in such flows.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In