Full Content is available to subscribers

Subscribe/Learn More  >

Lift Force Effects on the Behavior of Bubbles in Homogeneous Isotropic Turbulence

[+] Author Affiliations
Mustapha Abbad

University of Caen, Octeville, France

Benoît Oesterlé

Henri Poincaré University, Nancy, France

Paper No. FEDSM2005-77165, pp. 659-666; 8 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


The influence of lift forces on the dispersion of small bubbles is numerically studied in a homogeneous isotropic turbulence generated by random Fourier modes, under one-way coupling approximation. The effects of bubble Stokes number and mean relative velocity are investigated by computing the statistics from Lagrangian tracking of a large number of bubbles in many flow field realizations, and comparison is provided between the results obtained with and without taking the lift force into account. The effects of preferential concentration, which are known to reduce the terminal rise velocity of bubbles, are also investigated. The lift force is found to drastically modify the correlations and integral time scales of the fluid seen by the bubbles in their fluctuating motion, and to significantly enhance the accumulation of bubbles in high vorticity regions.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In