0

Full Content is available to subscribers

Subscribe/Learn More  >

Confinement Effects on Air Cross-Flow Over an Elliptical Cylinder

[+] Author Affiliations
Zakir Faruquee, David S.-K. Ting, Amir Fartaj

University of Windsor, Windsor, ON, Canada

Paper No. FEDSM2005-77100, pp. 455-464; 10 pages
doi:10.1115/FEDSM2005-77100
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

Cylinders in cross-flow encountered in engineering applications and in nature may or may not have confinement influence due to the presence and proximity of neighboring structures. On the other hand, fluid-structure experiments conducted in wind and water tunnels are typically restricted and affected by confinement. The confinement is usually expressed in terms of the blockage ratio, which is the cylinder/tunnel cross sectional area ratio. Therefore, a good understanding of the role of blockage is critical in further advancing the knowledge of fluid-structure interactions. The effect of blockage ratio on the fluid flow over a circular cylinder has been addressed by some authors, but, literature on elliptical cylinders is limited. In this study, fluid flow over an elliptical cylinder with axis ratios (minor to major axis ratio) of 1 (circular cylinder), 0.5 and 0.4 were investigated numerically, using control volume approach in FLUENT, at a Reynolds number (based on the hydraulic diameter) of 40. The flow was considered to be uniform at the entrance (40d and 15d upstream from the center of the cylinder for unbounded and bounded flow respectively) of the two dimensional computational domain, steady and parallel to the major axis of the cylinder. Blockage ratios of 0 (un-confined scenario), 0.07 and 0.12 were studied because of the availability of experimental data at these blockage ratios for the circular cylinder case. From the simulation output, the velocity distributions were analyzed in detail. The increase of blockage ratio increases the drag coefficient and reduces the wake size of the circular cylinder. On the other hand, the increase in blockage ratio increases the wake length of elliptical cylinders with (minor/major) axis ratios of 0.5 and 0.4. These results agree well with the available data in the literature.

Copyright © 2005 by ASME
Topics: Cylinders , Cross-flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In