0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Spatial Resolution and Box Size on Numerical Solutions of Turbulent Flows

[+] Author Affiliations
Dongmei Zhou

University of Texas at Austin, Austin, TX

Kenneth S. Ball

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. FEDSM2005-77231, pp. 223-232; 10 pages
doi:10.1115/FEDSM2005-77231
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 1: Symposia, Parts A and B
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4198-7 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

This paper has two objectives, (1) to examine the effects of spatial resolution, (2) to examine the effects of computational box size, upon turbulence statistics and the amount of drag reduction with and without the control scheme of wall oscillation. Direct numerical simulation (DNS) of the fully developed turbulent channel flow was performed at Reynolds number of 200 based on the wall-shear velocity and the channel half-width by using spectral methods. For the first objective, four different grids were applied to the same computational domain and the biggest impact was observed on the logarithmic law of mean velocity profiles and on the amount of drag reduction with 28.3% for the coarsest mesh and 35.4% for the finest mesh. Other turbulence features such as RMS velocity fluctuations, RMS vorticity fluctuations, and bursting events were either overpredicted or underpredicted through coarse grids. For the second objective, two different minimal channels and one natural full channel were studied and 3% drag reduction difference was observed between the smallest minimal channel of 39.1% and the natural full channel of 36.2%. In the near-wall region, however, the minimal channel flow did not exhibit significant difference in the mean velocity profiles and other lower-order statistics. Finally, from this systematical study, it showed that the accuracy of DNS depends more on the spanwise resolution, and it also confirmed that a minimal channel model is able to catch key structures of turbulence in the near-wall region but is much less expensive.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In