Full Content is available to subscribers

Subscribe/Learn More  >

HotPipe JI Project: Experimental Test and FE Analyses

[+] Author Affiliations
Luigino Vitali, Lorenzo Bartolini

Snamprogetti S.p.A., Fano, PU, Italy

Dag Askheim

Det Norske Veritas, Ho̸vik, Norway

Ralf Peek

Shell International Exploration and Production, Rijswijk, The Netherlands

Erik Levold

Statoil, Trondheim, Norway

Paper No. OMAE2005-67526, pp. 715-729; 15 pages
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4197-9 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME


In the last twenty years, experimental tests and FEM-based theoretical studies have been carried out to investigate the buckling mechanisms of thin-walled pipes subject to internal pressure, axial force and bending moment. Unfortunately, these studies do not completely cover the scope relevant for offshore pipelines i.e. outer diameter to thickness ratio lower than 50. In the HotPipe Phase 2 JI Project, full-scale bending tests were performed on pressurized pipes to verify the Finite Element Model predictions from HotPipe Phase 1 of the beneficial effect of internal pressure on the capacity of pipes to undergo large plastic bending deformations without developing local buckling. A total of 4 pipes were tested, the key test parameters being the outer-diameter-to-wall-thickness ratio (seameless pipes with D/t = 25.6, and welded UOE pipes with D/t = 34.2), and the presence of a girth weld in the test section. For comparison a Finite Element Model was developed with shell elements in ABAQUS. The test conditions were matched as closely as possible: this includes the test configuration, the stress-strain curves (i.e. using measured curves as input), and the loading history. The FE results very realistically reproduce the observed failure mechanisms by formation and localization of wrinkles on the compression side of the pipe. Good agreement is also achieved in the moment capacities (with predictions only 2.5 to 8% above measured values), but larger differences arose for the deformation capacity, suggesting that the DNV OS-F101 formulation for the characteristic bending strain (which is based on FE predictions from HotPipe Phase I) may be non-conservative in certain cases.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In