Full Content is available to subscribers

Subscribe/Learn More  >

Greatly Extended Distance Pipeline Monitoring Using Fibre Optics

[+] Author Affiliations
M. Nikles, F. Briffod

Omnisens, Lausanne, Switzerland

R. Burke

Shell Global Solutions International BV, The Netherlands

G. Lyons

BPP Technical Services, London, UK

Paper No. OMAE2005-67369, pp. 539-546; 8 pages
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4197-9 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME


Monitoring of the effects of hydrocarbon pipeline blockages such as may be caused by hydrates and waxes is receiving a higher level of consideration as the distributed sensing capability offered by the use of fibre optic technology matures. The extent of the hydrate or wax formation problem increases with pipeline length through the effects of cooling. The challenge is significantly greater when assuring flows in deep water and remote subsea locations. Commercially available strain and temperature sensing equipment such as discrete FBGs (Fibre Bragg Gratings) and fully distributed sensing techniques such as Raman DTS (distributed temperature sensor) and Brillouin OTDR (optical time domain reflectometry) typically offer sensing lengths of the order of 20–30km. Whilst this is in many instances a useful length, it is not sufficient to be able to monitor the whole of a pipeline which may be several hundreds of kilometres in length. The authors have developed and demonstrated a method for extending the reach of a Brillouin OTDR interrogating system such that sensing sections of conventional length (approximately 25km) can be successfully interrogated from distances well in excess of 100km without having to compromise on the performance. With a single instrument, more than 250km of sensing fibre can be monitored to within 1.5 metre resolution. By this means, temperature and strain profiles may be measured for the entire pipeline length which will enable active flow assurance measures to be taken including identifying the presence, nature and extent of blockages as they form. Consequently, any corrective action taken by the pipeline operators will be on an informed basis (such as the injection of an optimised quantity of inhibitor), and will incur a significantly lower level of risk than is currently possible. This paper describes the technology which has been developed to meet this requirement and provides results of simulated pipeline blockage effects which demonstrate this.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In