Full Content is available to subscribers

Subscribe/Learn More  >

Maximum Bladed Disk Forced Response From Distortion of a Structural Mode

[+] Author Affiliations
J. A. Kenyon

Air Force Research Laboratory, Wright-Patterson AFB, OH

J. H. Griffin, D. M. Feiner

Carnegie Mellon University, Pittsburgh, PA

Paper No. GT2002-30426, pp. 965-980; 16 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


A method is presented for obtaining maximum bladed disk forced response from distortion of a structural mode. It is shown that maximum response from mode distortion in a bladed disk occurs when the harmonic components of a distorted mode superimpose in a certain manner, causing localization of the mode and strong response in a particular blade. In addition, it is shown that the response of an intentionally mistuned system with maximum response does not change significantly when small random mistuning is added to the system. A method is described for calculating the structural mistuning necessary to obtain the distorted mode that gives maximum response. The theory is validated numerically.

Copyright © 2002 by ASME
Topics: Disks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In