0

Full Content is available to subscribers

Subscribe/Learn More  >

Sustained Load Cracking of Titanium Alloy Weldments

[+] Author Affiliations
Tasos Kostrivas, Lee Smith, Mike Gittos

TWI Ltd., Cambridge, UK

Paper No. OMAE2005-67474, pp. 221-229; 9 pages
doi:10.1115/OMAE2005-67474
From:
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4197-9 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME

abstract

Failure of critical titanium parts, including some offshore components, has drawn attention to delayed cracking in Ti-6Al-4V alloys, but, given good design and alloy variant selection, such failures are avoidable. Delayed cracking, or sustained load cracking (SLC), can occur at low to moderate temperature (approximately: −50 to 200°C), depending on the titanium alloy and condition. Appropriate testing methods are required to generate stress intensity threshold values (KISLC ) that can be incorporated into the design of titanium structures and recommendations are needed on the optimum chemistry and microstructure for greatest resistance. In the present work threshold stress intensity factor data (KISLC ) were generated for Ti-6Al-4V alloy sheet, forgings, pipe and weldments using two different rising stress intensity factor test methods. It is concluded that material with a beta-annealed microstructure and low oxygen content (i.e. extra-low interstitial material such as ASTM Grades 23 and 29), has high resistance to SLC and that weld metal and transformed heat-affected zone also perform well, before and after postweld heat treatment, provided interstitial element pick-up during welding is prevented. Purchasing material in a general ‘mill annealed’ condition is not recommended without specifying acceptable microstructures. Further refinement of test method is also recommended for defining KISLC .

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In