0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Method for Turbomachinery Aeroelasticity

[+] Author Affiliations
P. Cinnella, P. De Palma, G. Pascazio, M. Napolitano

Politecnico di Bari, Bari, Italy

Paper No. GT2002-30321, pp. 853-860; 8 pages
doi:10.1115/GT2002-30321
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

This work provides an accurate and efficient numerical method for turbomachinery flutter. The unsteady Euler or Reynolds-averaged Navier–Stokes (RANS) equations are solved in integral form, the blade passages being discretised using a background fixed C-grid and a body-fitted C-grid moving with the blade. In the overlapping region data are exchanged between the two grids at every time step, using bilinear interpolation. The method employs Roe’s second-order-accurate flux difference splitting scheme for the inviscid fluxes, a standard second-order discretisation of the viscous terms, and a three-level backward difference formula for the time derivatives. The state-of-the-art second-order accuracy of numerical methods for unsteady compressible flows with shocks is thus carried over, for the first time to the authors knowledge, to flutter computations. The dual time stepping technique is used to evaluate the nonlinear residual at each time step, thus extending to turbomachinery aeroelasticity the state-of-the-art efficiency of unsteady RANS solvers. The code is proven to be accurate and efficient by computing the 4th Aeroelastic Standard Configuration, namely, the subsonic flow through a turbine cascade with flutter instability in the first bending mode, where viscous effect are found practically negligible. Then, the very severe 11th Aeroelastic Standard Configuration is computed, namely, the transonic flow through a turbine cascade at off-design conditions, where the turbulence model is found to be the critical feature of the method.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In