Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Precise Contact Area During Spherical Indentation for Metallic Materials

[+] Author Affiliations
Sung-Hoon Kim, Kyung-Woo Lee, Eun-Chae Jeon, Dongil Kwon

Seoul National University, Seoul, Korea

Paper No. OMAE2005-67281, pp. 135-141; 7 pages
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4197-9 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME


The continuous indentation technique, because it is fast, precise, and nondestructive, has been widely used to determine such mechanical properties as flow properties, residual stress, fracture properties, viscoelastic properties and hardness of materials and structural units. In particular, continuous indentation by a spherical indenter can provide hardness and flow properties such as yield strength, tensile strength, and work-hardening exponent, using the characteristic that strain from the loaded indenter changes with indentation depth. Since the stress and strain values on the flow curve are defined based on the contact area between the indenter and material in the loaded state, accurate determination of the contact area is essential. Determination of the contact area is closely connected with elastic deflection and plastic pile-up/sink-in behavior. In this study, the pile-up phenomenon is considered as two independent behaviors, elastic deflection and plastic pile-up/sink-in, which can each be described by a formula. The formulas can be obtained from FE simulation with conditions reflecting real indentation tests for materials used for various purposes and with a wide range of material properties. By analyzing indentation morphology from the FE simulation, the two phenomena were quantified as formulas. In particular, plastic pile-up/sink-in behavior was formulated in terms of work-hardening exponent and indentation ratio.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In