0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery

[+] Author Affiliations
Hirofumi Doi, Juan J. Alonso

Stanford University, Stanford, CA

Paper No. GT2002-30313, pp. 787-794; 8 pages
doi:10.1115/GT2002-30313
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

The present study demonstrates the capabilities of a fluid/structure coupled computational approach which consists of an unsteady three-dimensional Navier-Stokes flow solver, TFLO, and a finite element structural analysis package, MSC/NASTRAN. The parallelized flow solver relies on a multi-block cell-centered finite volume discretization and the dual time stepping time integration scheme with multigrid for convergence acceleration. High accuracy is pursued with respect to load transfer, deformation tracking and synchronization between the two disciplines. As a result, the program successfully predicts the aeroelastic responses of a high performance fan, NASA Rotor 67, over a range of operational conditions. The results show that the unsteady pressure generated at the shock may act to damp or excite the blade motion mainly depending on the inter-blade phase angle. It is concluded that the level of sophistication in the individually sophisticated disciplines together with an accurate coupling interface will allow for accurate prediction of flutter boundaries of turbomachinery components.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In