0

Full Content is available to subscribers

Subscribe/Learn More  >

3D Unsteady Forces of the Transonic Flow Through a Turbine Stage With Vibrating Blades

[+] Author Affiliations
Romuald Rządkowski

Polish Academy of Sciences, Gdańsk, Poland

Vitaly Gnesin

Ukrainian National Academy of Sciences, Kharkov, Ukraine

Paper No. GT2002-30311, pp. 765-774; 10 pages
doi:10.1115/GT2002-30311
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

Numerical calculations of the 3D transonic flow of an ideal gas through turbomachinery blade rows moving relatively one to another with taking into account the blades oscillations is presented. The approach is based on the solution of the coupled aerodynamic-structure problem for the 3D flow through the turbine stage in which fluid and dynamic equations are integrated simultaneously in time, thus providing the correct formulation of a coupled problem, as the blades oscillations and loads, acting on the blades, are a part of solution. An ideal gas flow through the mutually moving stator and rotor blades with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan and moving hybrid H-H grid. The structure analysis uses the modal approach and 3D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations with the modal coefficients depending on time. The algorithm proposed allows to calculate turbine stages with an arbitrary pitch ratio of stator and rotor blades, taking into account the blade oscillations by action of unsteady loads caused both outer flow nonuniformity and blades motion. There has been performed the calculation for the stage of the turbine with rotor blades of 0.765 m. The numerical results for unsteady aerodynamic forces due to stator-rotor interaction are compared with results obtained with taking into account the blades oscillations.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In