0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of High Strength Linepipe With Excellent Deformability

[+] Author Affiliations
Mitsuhiro Okatsu, Toyohisa Shinmiya, Nobuyuki Ishikawa, Shigeru Endo, Joe Kondo

JFE Steel Corporation, Fukuyama, Japan

Paper No. OMAE2005-67149, pp. 63-70; 8 pages
doi:10.1115/OMAE2005-67149
From:
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4197-9 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME

abstract

Extensive studies to develop high deformability linepipe have been conducted. In case of linepipes laid at seismic region, higher resistance to buckling against large strain induced by earthquake related ground movements are required. In order to improve the deformability of pipes, two different types of microstructural control technologies were proposed, base on theoretical and analytical studies on the effect of microstructural characteristics on stress-strain behavior. Grade X65 to X100 linepipes with ferrite-bainite microstructure were manufactured by optimizing the microstructural characteristics. Grade X80 linepipe with bainitic microstructure containing dispersed fine M-A constituents particles was also developed by applying new conceptual TMCP process. Deformability of developed linepipes with two different types of microstructure were evaluated by axial compression test, and all the developed linepipes showed superior resistance to buckling comparing with conventional pipes. Tensile properties after thermal coating of developed high deformability pipe was also investigate. It was shown that increase in yield strength by thermal strain aging was minimized and round-house type stress-strain curve was maintained for the linepipe manufactured by new conceptional TMCP process.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In