Full Content is available to subscribers

Subscribe/Learn More  >

A Bulk Flow Model for Off-Centered Honeycomb Gas Seals

[+] Author Affiliations
Thomas Soulas, Luis San Andres

Texas A&M University, College Station, TX

Paper No. GT2002-30286, pp. 543-552; 10 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


A computational analysis for prediction of the static and dynamic forced performance of gas honeycomb seals at off-centered rotor conditions follows. The bulk-flow analysis, similar to the two-control volume flow model of Kleynhans and Childs [1], is brought without loss of generality into a single-control volume model, thus simplifying the computational process. The formulation accommodates the honeycomb effective cell depth, and existing software for annular pressure seals is easily upgraded for damper seal analysis. An analytical perturbation method for derivation of zeroth- and first-order flow fields renders the seal equilibrium response and frequency-dependent dynamic force impedances, respectively. Numerical predictions for a centered straight-bore honeycomb gas seal show good agreement with experimentally identified impedances, hence validating the model and confirming the paramount influence of excitation frequency on the rotordynamic force coefficients of honeycomb seals. The effect of rotor eccentricity on the static and dynamic forced response of a smooth annular seal and a honeycomb seal is evaluated for characteristic pressure differentials and rotor speeds. Leakage for the two seal types increases slightly as the rotor eccentricity increases. Rotor off-centering does have a pronounced non-linear effect on the predicted (and experimentally verified) dynamic force coefficients for smooth seals. However, in honeycomb gas seals, even large rotor center excursions do not sensibly affect the effective local film thickness, maintaining the flow azimuthal symmetry. The current model and predictions thus increase confidence in honeycomb seal design, operating performance and reliability in actual applications.

Copyright © 2002 by ASME
Topics: Flow (Dynamics)



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In