0

Full Content is available to subscribers

Subscribe/Learn More  >

Cogenerative BAGT Performance With Variable Thermal Power

[+] Author Affiliations
M. Bianchi, G. Negri di Montenegro, A. Peretto

University of Bologna, Bologna, Italy

Paper No. GT2002-30557, pp. 343-352; 10 pages
doi:10.1115/GT2002-30557
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2002, Parts A and B
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3609-6 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

The use of gas turbine and combined cycle power plants for thermal and electric power generation is, nowadays, a consolidated technology. Moreover the employment of combined heat and power production, especially for low power requirements, is constantly increasing. In this scenario, Below Ambient pressure discharge Gas Turbine (BAGT) is an innovative and interesting application; the hot gases discharged from a gas turbine may be expanded below ambient pressure to obtain an increase in electric power generation. The gases are then cooled to supply heat to the thermal utility and finally recompressed to the ambient pressure. The power plant cogenerative performance depends on the heat and electric demand that usually varies during the year (for residential heating the heat to electric power ratio may range from 0.3 to 9). In this paper, the thermal load variation influence on the BAGT performance will be investigated and compared with those of gas turbine and combined cycle power plants.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In