0

Full Content is available to subscribers

Subscribe/Learn More  >

Practical Implementation of the Polynomial Representation of Potential Damping in Time Domain Simulations

[+] Author Affiliations
Hermione J. van Zutphen, Joost den Haan

Protys, Delft, The Netherlands

Paper No. OMAE2005-67385, pp. 775-782; 8 pages
doi:10.1115/OMAE2005-67385
From:
  • ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
  • 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 1, Parts A and B
  • Halkidiki, Greece, June 12–17, 2005
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 0-7918-4195-2 | eISBN: 0-7918-3759-9
  • Copyright © 2005 by ASME

abstract

Time domain simulations are required when analyzing nonlinear vessel behaviour. The usual approach conducting time domain simulations is to transform a complex valued function of frequency dependent damping and added mass to a convolution integral in the time domain. Evaluating the integrals during time domain simulations is computational expensive and the accuracy of the calculation of the limit value of added mass in diffraction calculations is dependent on the panel size of the model. In this paper, an alternative approach based on a polynomial model for damping proposed by K.E. Kaasen et al is extended from a single degree of freedom to a 6 degrees of freedom model of a heavy lift barge. Polynomials for contributions of velocity to the damping force are constructed generically using a least square curve fitting method. The polynomials then are transformed to the time domain counterpart using a state space representation. The quality of the fits of the damping function has a large influence on the resulting damping force in time domain. Furthermore, the higher the order of the differential equation, the larger the number of variables to integrate during a time domain simulation. Consequently, the presented method is not necessarily more efficient in simulations than the traditional retardation functions.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In