0

Full Content is available to subscribers

Subscribe/Learn More  >

A Unified Approach for Designing a Radial Flow Gas Turbine

[+] Author Affiliations
M. S. Y. Ebaid, F. S. Bhinder, G. H. Khdairi, T. S. El-Hasan

Amman, Jordan

Paper No. GT2002-30578, pp. 1105-1117; 13 pages
doi:10.1115/GT2002-30578
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

Radial flow turbo machines have been used for a long time in a variety of applications such as turbochargers, cryogenics, auxiliary power units, and air conditioning of aircraft cabins. Hence numerous papers have been written on the design and performance of these machines. The only justification for yet another paper is that it would describe a unified approach for designing a single stage inward flow radial turbine comprising a rotor and the casing. The current turbine is designed to drive a direct-coupled permanent magnet high-speed alternator running at 60000 rpm and developing a maximum of 60 kW electrical power. The freedom of choice of the tip diameter and the tip width of the rotor that would be necessary for optimum isentropic efficiency of the turbine stage was restricted by the specified rotational speed and power output. Hence, an optimisation procedure was developed to determine the principal dimension of the rotor. The mean relative velocity in the rotor passages in the direction of the flow would be accelerated but flow velocity on the blade surfaces experiences a significant space rate of deceleration. The rate of deceleration can be controlled by means of a proper choice of the axial length of the rotor. A prescribed mean stream velocity distribution procedure was used to spread the rate of deceleration of the mean flow velocity along the meridional length of the flow passages. The nozzle-less volute casing was designed to satisfy the mass flow rate, energy and angular momentum equations simultaneously. This paper describes the work undertaken to design both the rotor and the casing. The work was motivated by the growing interest in developing gas turbine based hybrid power plant for road vehicles. The authors believe that the paper would lead to a stimulating discussion.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In