0

Full Content is available to subscribers

Subscribe/Learn More  >

Humid Air NOx Reduction Effect on Liquid Fuel Combustion

[+] Author Affiliations
Alexander G. Chen

United Technologies Research Center, East Hartford, CT

Daniel J. Maloney

National Energy Technology Laboratory, Morgantown, WV

William H. Day

Pratt & Whitney Power Systems, Inc., East Hartford, CT

Paper No. GT2002-30163, pp. 917-925; 9 pages
doi:10.1115/GT2002-30163
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860 °F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440–3090 °F (1610 − 1970 K) with and without added humidity. The results show more than 90 percent reduction of NOx through 10 percent humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In