Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Combustion Dynamics in a Staged Premixed Combustor

[+] Author Affiliations
Jeffery A. Lovett, Kevin T. Uznanski

United Technologies Pratt & Whitney, East Hartford, CT

Paper No. GT2002-30646, pp. 807-815; 9 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


Combustion instabilities are a major challenge in the development of low-emissions premixed gas turbine combustors. The development and demonstration of predictive capabilities for instabilities has progressed considerably. One of the major fundamental mechanisms demonstrated in several instances is the convection of fuel concentration fluctuations from the fuel injector to the reaction zone. A one-dimensional model has been developed which captures this mechanism coupled to solutions for standing acoustic waves. Since many real combustion systems include multiple flow paths for mixing and/or staged fuel injection, the model has been extended to include a parallel acoustic path and two fuel injection locations. Splitting of fuel between two injection positions is a common method to influence combustion dynamics toward a more operable system. A relatively simple model which only partially couples acoustics and heat release was applied to an axially staged combustor and the predictions are compared with the experimental behavior. The results from this model successfully predict the overall dynamics behavior as a function of the fuel split between the two injection locations.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In