0

Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Evaluation of Double Annular Combustion Systems

[+] Author Affiliations
Paul A. Denman

Loughborough University, Loughborough, Leicestershire, UK

Paper No. GT2002-30465, pp. 749-757; 9 pages
doi:10.1115/GT2002-30465
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

Legislation controlling the permitted levels of pollutant emissions from aircraft gas turbines has been an increasingly important design driver for the combustion system for some time, particularly with respect to oxides of nitrogen. This has lead to many suggestions for radical departures from the geometry of the classical combustor configuration involving, for example, lean premixed module technology, or staging (axially or radially) of combustor pilot and main zones. The optimum operation of any combustor also requires, however, appropriate and efficient distribution of compressor delivery air to the various flametube features (fuel injectors, dilution ports, for cooling and for air bleed purposes). Radial staging, leading to double annular combustor configurations, poses a particularly difficult challenge. The radial depth of the combustor increases to a level where the external aerodynamics of the combustor involves large flow turning after the pre-diffuser. Careful design is then needed to achieve acceptable levels of loss coefficient in the outer annulus. If these aspects are not properly addressed then inadequate penetration and mixing in the combustor interior can result, rendering low emissions performance impossible. This paper will report on the design, instrumentation and operation of a fully annular isothermal test facility, which has been developed specifically to enable this important issue of external flow quality in double annular combustor systems to be assessed. Representative inlet conditions to the combustion system are generated using a single stage axial compressor; modular construction enables quick and inexpensive changes to components of the combustor (pre-diffuser, cowl shape, liner port locations and geometrical details). Computerised rig control and data acquisition allows the collection of large amounts of high quality data. In addition to the calculation of overall system performance, it is then possible to identify flow mechanisms and loss-producing features in various zones and suggest appropriate modifications.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In