Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Flame Propagation in a Staged Combustor

[+] Author Affiliations
Tomoko Tsuru, Akira Imamura, Yasuhiro Kinoshita, Yoshiharu Nonaka

Kawasaki Heavy Industries, Ltd., Akashi, Hyogo, Japan

Yuichi Itoh, Nobuyuki Taniguchi

University of Tokyo, Tokyo, Japan

Paper No. GT2002-30097, pp. 601-608; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


Highly unsteady flow fields are generated in recent low-emissions gas turbine combustors. Numerical simulation of such flows using conventional numerical code using a time-averaged turbulence model is difficult and time-accurate LES (Large Eddy Simulation) is expected to predict them. Calculation of turbulent combusting and non-combusting flow field in a staged combustor were conducted using LES. To validate the LES calculation, a prediction of time-averaged velocity field is compared with those by an experiment and a conventional numerical method based on RANS model. Turbulence intensity affects flame speed so much that velocity fluctuations were measured to obtain turbulence intensity in the non-combustion test. Strongly turbulent regions between the pilot and main stages, which are important for the flame propagation, were simulated. The combustion was calculated using a laminar flamelet model and the flame propagating phenomenon was simulated properly, which is impractical by the conventional simulations using time-averaged turbulence models. The feasibility of the LES calculation is discussed.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In