Full Content is available to subscribers

Subscribe/Learn More  >

Two-Dimensional Flow and NOx Emissions in Deflagrative Internal Combustion Wave Rotor Configurations

[+] Author Affiliations
Razi Nalim, Kerem Pekkan

Indiana University – Purdue University, Indianapolis, IN

Paper No. GT2002-30085, pp. 501-511; 11 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


A wave rotor is proposed for use as a constant volume combustor. A novel design feature is investigated as a remedy for hot gas leakage, premature ignition and pollutant emissions that are possible in this class of unsteady machines. The base geometry involves fuel injection partitions that allow stratification of fuel/oxidizer mixtures in the wave rotor channel radially, enabling pilot ignition of overall lean mixture for low NOx combustion. In this study, available turbulent combustion models are applied to simulate approximately constant volume combustion of propane and resulting transient compressible flow. Thermal NO production histories are predicted by simulations of the STAR-CD code. Passage inlet/outlet/wall boundary conditions are time-dependent, enabling the representation of a typical deflagrative internal combustor wave rotor cycle. Some practical design improvements are anticipated from the computational results. For a large number of derivative design configurations, fuel burn rate, two-dimensional flow and emission levels are evaluated. The sensitivity of channel combustion to initial turbulence levels is evaluated.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In