Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Performance of Laser Peened Materials

[+] Author Affiliations
Michael R. Hill, Theresa E. Pistochini, Adrian T. DeWald

University of California at Davis, Davis, CA

Paper No. PVP2005-71793, pp. 203-207; 5 pages
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 7: Operations, Applications, and Components
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4192-8 | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME


Laser peening is an emerging technology for the surface treatment of metallic materials that is capable of enhancing resistance to fatigue failure. This paper describes some recent results from joint research programs conducted to generate data on residual stress and fatigue performance of laser peened materials. Specifically, we present data for residual stress imparted by laser peening and fatigue life improvement of laser peened coupons relative to as-machined coupons. These data are presented for a range of high-strength materials employed in aircraft and other demanding applications: BSTOA Ti-6A14V titanium alloy, 300M steel, MP35N Ni-Co-Cr-Mo alloy, and 7050-T7451 aluminum alloy. For each material, residual stress distributions were measured for treatment with different laser peening parameter sets. For particular laser peening parameter sets, stress versus life data were generated for as-machined and laser peened fatigue coupons, which quantifies fatigue life improvement attained by laser peening over a range of applied loads.

Copyright © 2005 by ASME
Topics: Fatigue , Lasers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In