Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Catalytic Pilot for Low NOx Industrial Gas Turbines

[+] Author Affiliations
Hasan Karim, Kent Lyle, Shahrokh Etemad, Lance Smith, William Pfefferle

Precision Combustion, Inc., North Haven, CT

Partha Dutta, Kenneth Smith

Solar Turbines, Inc., San Diego, CA

Paper No. GT2002-30083, pp. 483-490; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


This paper describes the design and testing of a catalytically-stabilized pilot burner for current and advanced Dry Low NOx (DLN) gas turbine combustors. In this paper, application of the catalytic pilot technology to industrial engines is described using Solar Turbines’ Taurus 70 engine. The objective of the work described is to develop the catalytic pilot technology and document the emission benefits of catalytic pilot technology when compared to higher, NOx producing pilots. The catalytic pilot was designed to replace the existing pilot in the existing DLN injector without major modification to the injector. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over wide range of combustion temperatures. The catalytic reactor lit off at a temperature of approximately 598K (325°C/617°F) and operated at simulated 100% and 50% load conditions without a preburner. At high pressure, the maximum catalyst surface temperature was similar to that observed during atmospheric pressure testing and considerably lower than the surface temperature expected in lean-burn catalytic devices. In single injector rig testing, the integrated assembly of the catalytic pilot and Taurus 70 injector demonstrated NOx and CO emission less than 5 ppm @ 15% O2 for 100% and 50% load conditions along with low acoustics. The results demonstrate that a catalytic pilot burner replacing a diffusion flame or partially-premixed pilot in an otherwise DLN combustor can enable operation at conditions with substantially reduced NOx emissions.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In