Full Content is available to subscribers

Subscribe/Learn More  >

Design Study of a Lean Premixed Prevaporized Counter Flow Combustor for a Micro Gas Turbine

[+] Author Affiliations
O. Liedtke, A. Schulz, S. Wittig

Universität Karlsruhe, Karlsruhe, Germany

Paper No. GT2002-30074, pp. 405-412; 8 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The present paper describes a new burner for a micro gas turbine utilizing the lean premixed prevaporized (LPP) combustion. The major objective of the new combustor concept is to achieve low pollutant emissions, in particular carbon monoxide (CO) and nitrogen oxide (NOx ). Therefore, a homogeneous air fuel mixture is imperative for a lean combustion. Due to the thermodynamic cycle conditions of the micro gas turbine, the combustion air temperature is too low for an intense evaporation of a liquid fuel droplet spray. The new combustor concept therefore, is based on fuel film evaporation on the hot inner surface of a premix tube. The heat required for fuel film evaporation is transferred from the hot combustion gases, flowing along the outer surface of the tube, through the tube wall. The combustor wall is a multi-layered assembly consisting of a ceramic inner liner, a compliant layer, and the outer metal casing. This design allows almost adiabatic combustion to be established. The design process of the combustor is assisted by comprehensive numerical studies of droplet and fuel film evaporation. The commercial CFD code “CFD-RC” has been utilized to investigate the isothermal flow of the combustor. The vortex flow of the burner, which provides for flame stabilization, is described in detail. First experimental tests have been conducted. Measured pollutant concentrations of the exhaust gases meet international standards and demonstrate the great potential of the new combustor.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In