0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of Swirl Stabilized Turbulent Gaseous Flames

[+] Author Affiliations
Vivek K. Khanna, Uri Vandsburger, William R. Saunders, William T. Baumann

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. GT2002-30061, pp. 285-297; 13 pages
doi:10.1115/GT2002-30061
From:
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME

abstract

With the advent of lean premixed gas turbine combustors, research in the area of thermo-acoustic instabilities and active combustion control came into the limelight. To be able to predict and control these instabilities, it is required that both the acoustics of the system, and a frequency-resolved response of the combustion process to velocity perturbations be understood. Experimental techniques developed by the Virginia Active Combustion Control Group at Virginia Tech, to obtain an open loop flame transfer function were applied to both fully and partially premixed swirl stabilized turbulent gaseous flames using commercial grade methane as fuel. A frequency-resolved fluctuating velocity was applied at the inlet of the combustor within the frequency range of 20–400 Hz, and the OH* chemiluminescence was used as a measure of the fluctuating heat release rate within the flame. Experiments were conducted at atmospheric pressure for two swirl numbers of 0.79 and 1.19, and three equivalence ratios of 0.55, 0.60 and 0.65. The flow rates studied resulted in Reynolds numbers of 14,866 and 19,821. The results show that for the linear range, the magnitude of the FRF is primarily dependent on the premixing quality and the mean energy content of the mixture, while the phase of the FRF is quite sensitive to Φ′ oscillations and to the variations in the species concentration across the cross-section of the flow.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In