Full Content is available to subscribers

Subscribe/Learn More  >

Importance of Inlet Total Pressure Conditions in Evaluating Performance of Non-Symmetric Gas Turbine Exhaust Ducts

[+] Author Affiliations
M. H. Cunningham, A. M. Birk

Queen’s University, Kingston, ON, Canada

W. Di Bartolomeo

Pratt & Whitney Canada, Longueuil, QC, Canada

Paper No. GT2002-30499, pp. 103-109; 7 pages
  • ASME Turbo Expo 2002: Power for Land, Sea, and Air
  • Volume 1: Turbo Expo 2002
  • Amsterdam, The Netherlands, June 3–6, 2002
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3606-1 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


When highly non-symmetric exhaust ducts are installed on a gas turbine engine, the asymmetries result in a non-uniform circumferential total pressure condition at the inlet of the duct. When testing these ducts experimentally or computationally the correct inlet conditions are often not known or cannot be reproduced. To study the sensitivity of duct performance to inlet conditions, an experimental and computational study of a non-symmetric gas turbine exhaust duct that includes a 160° turn with an annular to rectangular transition, has been carried out over a range of inlet conditions. The inlet conditions varied include circumferential total pressure profiles and swirl. The experimental studies have been carried out in cold flow with several non-uniform total pressure inlet conditions. Computational fluid dynamic (CFD) techniques validated against the experimental results, have been used to extend the range of inlet conditions beyond the range that could be obtained experimentally to those typical of an engine installation. Results show that the total pressure inlet conditions have a significant effect on the flow structure in the exhaust duct and that the performance of the exhaust duct degrades as the level of circumferential non-uniformities increase. However, trends in geometric optimization identified experimentally using cold flow and uniform total pressure inlet conditions are confirmed computationally with circumferential non-uniformities typical of actual engine operations. This suggests that although inlet conditions are important for determining the level of performance, the configuration of the optimized geometry is somewhat independent of the inlet conditions.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In