Full Content is available to subscribers

Subscribe/Learn More  >

Rod Control Assemblies Wear Mechanisms

[+] Author Affiliations
Damien Kaczorowski, Jean-Mary Georges, Sandrine Bec, André-Bernard Vannes, André Tonck

Ecole Centrale de Lyon, Ecully Cedex, France

Jean-Philippe Vernot

Framatome ANP, Le Creusot Cedex, France

Paper No. ICONE10-22699, pp. 927-934; 8 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 4
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3598-7 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


In nuclear power plants, slender tubular components are subjected to vibrations in a PHTW environment. As a result, the two contacting surfaces, tubes and their guides undergo impact at low contact pressures [1]. The components are usually made of stainless steel and it was found that the influence of the PHTW, combined with other actions (such as corrosion, erosion, squeeze film effect, third body effect and cavitation) leads to a particular wear of the material [2] [3]. Therefore, this paper aims to show that the colloidal oxides, formed on the steel surfaces in PHTW, play a principal role in the wear of the surfaces. Actually, due to the specific kinematic conditions of the contact, the flow of compacted oxides abrades the surfaces.

Copyright © 2002 by ASME
Topics: Wear , Mechanisms



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In