Full Content is available to subscribers

Subscribe/Learn More  >

IEC-Based Neutron Generator for Security Inspection System

[+] Author Affiliations
Linchun Wu, George H. Miley

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. ICONE10-22696, pp. 921-926; 6 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 4
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3598-7 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basic elements present in the explosives can be measured through the (n, n’γ) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as 252 Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of ∼108 n/s via DD reactions over recent years or 14-MeV neutrons of ∼2×1010 n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall trapping and acceleration of ions is needed. The theory engaged is an extension of original analytic study by R.L. Hirsh on the potential well structure in a spherical IEC device, i.e. roughly a “line” source of neutrons from a cylindrical IEC is a “point” source from the spherical geometry. Thus our present study focuses on the cylindrical IEC for its convenient application in an FNA detecting system. The conceptual design and physics of ion trapping and re-circulation in a cylindrical IEC intended for neutron-based inspection system will be presented.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In