Full Content is available to subscribers

Subscribe/Learn More  >

Experience on Combustion and Co-Combustion of Greek Brown Coal in Fluidized Bed Facilities

[+] Author Affiliations
Emmanuel Kakaras, Panagiotis Grammelis, Panagiotis Vourliotis

National Technical University of Athens, Zografou, Greece

George Skodras

Aristotle University of Thessaloniki, Thessaloniki, Greece

Paper No. FBC2003-128, pp. 499-515; 17 pages
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME


The paper aims to present the experience gained from the combustion trials of Greek brown coal in different installations, both in semi-industrial and laboratory scale. Specifically, these research activities are separated in two parts, i.e. combustion tests using only brown coal and co-combustion tests with brown coal and biomass. Combustion tests with Greek lignite were realised in three different Circulating Fluidized Bed Combustion (CFBC) facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA) and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE’s power station Niederaussem in Germany. The results include the determination of operating conditions to achieve proper fuel burnout, the examination of the influence of air staging on the temperature distribution inside the reactor and the investigation of the combustion behaviour of the particular fuel type and emitted pollutants. Several conclusions are drawn concerning the necessary modifications and requirements of the plant layout when a large scale CFBC installation is designed to utilize low grade brown coal. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. During the tests, oxygen concentration and CO, SO2 , N2 O and NOX emissions were continuously monitored. Ash samples were collected and analysed for heavy metals content in ICP-AES spectrophotometer. The improved combustion behaviour of this lignite type was more than evident, since it has lower moisture content and increased calorific value. In all co-combustion tests, low emissions of gaseous pollutants were obtained and metal element emissions were lower than the corresponding values anticipated by the guidelines. In addition, lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidised bed. The main purpose of these experiments was to examine ash melting problems and differentiation to the emitted pollutants due to biomass addition. The obtained results of all aforementioned activities showed that fluidised bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with other biomass materials.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In