0

Full Content is available to subscribers

Subscribe/Learn More  >

Uncertainty Analysis of RBMK-Related Experimental Data

[+] Author Affiliations
Rolandas Urbonas, Algirdas Kaliatka, Mindaugas Liaukonis

Lithuanian Energy Institute, Kaunas, Lithuania

Paper No. ICONE10-22490, pp. 801-807; 7 pages
doi:10.1115/ICONE10-22490
From:
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 4
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3598-7 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME

abstract

An attempt to validate state-of-the-art thermal hydraulic code ATHLET (GRS, Germany) on the basis of E-108 test facility was made. Originally this code was developed and validated for different type reactors than RBMK. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors, further codes’ implementation and validation is required. The phenomena associated with channel type flow instabilities and CHF were found to be an important step in the frame of the overall effort of state-of-the-art validation and application for RBMK reactors. In the paper one-channel approach analysis is presented. Thus, the oscillatory behaviour of the system was not detected. The results show dependence on the nodalisation used in the heated channels, initial and boundary conditions and code selected models. It is shown that the code is able to predict a sudden heat structure temperature excursion, when critical heat flux is approached. GRS developed uncertainty and sensitivity methodology was employed in the analysis.

Copyright © 2002 by ASME
Topics: Uncertainty

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In