0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamics of Double-Dipleg Circulating Fluidized Beds for Waste Incineration

[+] Author Affiliations
Xiaoyin Yun, Shaohua Wu

Harbin Institute of Technology, Harbin, P.R. China

Weigang Lin

Chinese Academy of Sciences, Beijing, P.R. China

Paper No. FBC2003-120, pp. 473-480; 8 pages
doi:10.1115/FBC2003-120
From:
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME

abstract

In order to solve the problems of high temperature chlorine induced corrosion and the emission of dioxins, a new type of double-dipleg circulating fluidized bed incinerator is under development at the Institute of Process Engineering, Chinese Academy of Sciences. Understanding the hydrodynamics of such new type of CFB incinerator are of crucial importance for successful design and operation of the system. Experiments have been carried out in a lab-scale double-dipleg circulating fluidized bed to study the hydrodynamics of such system. The investigation is focused on the pressure profile in the loop and residence time distribution of particles with different sizes and densities in the secondary dipleg. The results show that the pressure profile in such system is similar to that in the conventional CFB. The residence time distribution (RTD) function of particles in the second dipleg varies with particle recirculating rate, superficial gas velocity and the characteristics of the particles, such as density and size. The mean residence time of particles decreases sharply with an increase of the particle re-circulating rate and slightly decreases as the superficial gas velocity increases. It appears that the density of particle has a stronger influence on the residence time than the particle size. The lighter particles have a shorter residence time. The residence time distribution function of the particles is described by a tank-in-series model. The implication of the results to the design and operation of the double-dipleg circulating fluidized bed incinerator are discussed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In