0

Full Content is available to subscribers

Subscribe/Learn More  >

Two-Phase Flow Modeling in a Pipe Related to Flow-Induced Vibration

[+] Author Affiliations
W. G. Sim

Hannam University, Taejon, Korea

N. W. Mureithi, M. J. Pettigrew

École Polytechnique de Montréal, Montréal, QC, Canada

Paper No. PVP2005-71171, pp. 393-400; 8 pages
doi:10.1115/PVP2005-71171
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 4: Fluid Structure Interaction
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4189-8 | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. The distributions of flow parameters across a pipe, such as gas velocity, liquid velocity and void fraction, may be assumed to follow a power law (Cheng 1998, Serizawa et al. 1975). The void fraction profile is, for example, uniform for bubbly flow while it is more or less parabolic for slug flow. In the present work, the average values of momentum flux, slip ratio, etc. are derived by integral analysis, based on approximate power law distributions. A parametric study with various distributions was performed. The existing empirical formulations for average void fraction, proposed by Wallis (1969), Zuber et al. (1967) and Ishii (1970), are considered to obtain the present results. In particular, the unsteady momentum flux for slug flow is approximated.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In