Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Coal Type on Thermal Balance in a Dense Phase of a Circulating Fluidized Bed Combustor

[+] Author Affiliations
Mirko S. Komatina

Belgrade University, Belgrade, Yugoslavia

Xin Liu, Franz Winter

Vienna University of Technology, Vienna, Austria

Paper No. FBC2003-106, pp. 417-421; 5 pages
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME


The results of experimental investigations of the effect of coal type on the thermal balance during early stages in a dense phase of a circulating fluidized bed combustor (CFBC) are presented in this paper. The experimental investigations were performed in a laboratory-scale CFBC. Five coals with three size classes (small 0.5–0.63 mm, medium 2–3.1 mm, and large 7.1–8 mm) were tested. The electrical heating system was used to ensure that the riser has a constant temperature (850°C) before the experiments. Mean velocity was 1.2 m/s. Oxygen concentration was 5%. During the experiments the temperature in the dense phase in the lower part of the riser and the gas concentrations of CO and CO2 were measured continuously. On the temperature histories measured, it can be seen that after feeding the coal batch into the hot CFBC, the temperature in the dense phase decreases, after reaching a minimum value and increases back again. The experimental results were compared to each other on the basis of the maximum temperature drop after feeding the coal batch. It was concluded that the temperature drop depends slightly on coal size and mainly on coal type and its mechanical and physical structure. The temperature drop slightly increases when the particle size of the coal batch increases. The strongest influence on the temperature drop in the dense phase of the CFBC shows the volatile content of the original coal and the temperature drop is directly proportional to the volatile content.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In