0

Full Content is available to subscribers

Subscribe/Learn More  >

Capture of Alkali Metals by Kaolin

[+] Author Affiliations
Khanh-Quang Tran, M. Kristiina Iisa, Oliver Lindqvist

Chalmers University of Technology, Gothenburg, Sweden

Britt-Marie Steenari, Magnus Hagström, Jan B. C. Pettersson

Göteborg University, Gothenburg, Sweden

Paper No. FBC2003-083, pp. 403-409; 7 pages
doi:10.1115/FBC2003-083
From:
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME

abstract

Alkali metals present in biomass fuels may cause increased bed agglomeration during fluidized bed combustion. In worst case this may lead to complete defluidization of the bed. Other problems caused by alkali metals include increased fouling and slagging. One possibility to reduce the impact of alkali metals is to add sorbents, e.g. aluminosilicates, to the bed for the capture of alkali metals. In the current investigation, the capture of vapor phase potassium compounds by kaolin was investigated in a fixed bed reactor. The reactor consisted of an alkali metal source placed at a variable temperature from which gaseous potassium compounds were generated, a fixed bed holding the kaolin, and an on-line detector for the alkali metal concentration. The on-line alkali metal detector was based on ionization of alkali metals on hot surfaces and is capable of detecting alkali metals down to ppb levels. This makes it possible to perform experiments at alkali metal concentrations relevant to fluidized bed combustion of biomass fuels. In the experiments, KCl was used as the alkali metal source with inlet concentrations of 0.5–3.5 ppm. The experiments were performed at reactor temperatures of 800–900°C and a contact time of 0.26 s. The capture efficiencies of KCl were always above 97%. The capture efficiency was somewhat higher in oxidizing than in reducing gas atmospheres. In the oxidizing gas atmosphere, the conversion was slightly higher with H2 O addition than without. The capture efficiency decreased slightly as temperature or KCl concentration was increased.

Copyright © 2003 by ASME
Topics: Metals , Kaolin

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In