0

Full Content is available to subscribers

Subscribe/Learn More  >

Discrete Element Simulation (DEM) for Coupled Description of Material and Energy Flow Within Moving Granular Media

[+] Author Affiliations
Harald Kruggel-Emden, Siegmar Wirtz, Erdem Simsek, Viktor Scherer

Ruhr-Universitaet Bochum, Bochum, Germany

Paper No. PVP2005-71360, pp. 159-164; 6 pages
doi:10.1115/PVP2005-71360
From:
  • ASME 2005 Pressure Vessels and Piping Conference
  • Volume 4: Fluid Structure Interaction
  • Denver, Colorado, USA, July 17–21, 2005
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4189-8 | eISBN: 0-7918-3763-7
  • Copyright © 2005 by ASME

abstract

The discrete element method (DEM) can be used for modeling moving granular media in which heat and mass transport takes place. In this paper the concept of discrete element modeling with special emphasize on applicable force laws is introduced and the necessary equations for heat transport within particle assemblies are derived. Possible flow regimes in moving granular media are discussed. The developed discrete element model is applied to a new staged reforming process for biomass and waste utilization which employs a solid heat carrier. Results are presented for the flow regime and heat transport in substantial vessels of the process.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In