0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Performance of a Novel Design of Pressurized Fluidized Bed Combustor

[+] Author Affiliations
Alan L. T. Wang, John F. Stubington

University of New South Wales, Sydney, NSW, Australia

Paper No. FBC2003-057, pp. 333-340; 8 pages
doi:10.1115/FBC2003-057
From:
  • 17th International Conference on Fluidized Bed Combustion
  • 17th International Conference on Fluidized Bed Combustion
  • Jacksonville, Florida, USA, May 18–21, 2003
  • Conference Sponsors: Advanced Energy Systems
  • ISBN: 0-7918-3680-0 | eISBN: 0-7918-3675-4
  • Copyright © 2003 by ASME

abstract

A bench-scale fluidized bed combustor with a novel fluidizing gas injection manifold was successfully built for characterization of Australian black coals under pressurized fluidized bed combustion (PFBC) conditions. The bed of silica sand (mean size 1.3 mm and density 2700 kg/m3 ) was 40 mm ID with a static height of 75 mm. This facility was designed to operate at 1.6 MPa, 850°C and a fluidizing velocity of 0.9 m/s, identical to those used industrially, in order to match as closely as possible the local hydrodynamic environment around each coal particle in an industrial PFBC. To verify satisfactory hydrodynamic performance with the novel gas injection manifold, the fluidization was directly investigated by measuring differential pressure fluctuations under both ambient and PFBC conditions. In addition, a Perspex cold model was built to simulate at ambient conditions the hydrodynamics of the hot bed in this PFBC facility. The cold model was constructed to a geometric scale of 1.431:1, determined by Glicksman’s scaling law. Under PFBC conditions of 1.6 MPa, 850°C and 0.9 m/s, the bed in UNSW’s PFBC facility operated in a stable bubbling regime and the solids were very well mixed. The bubbles in this PFBC were effectively cloudless and no gas backmixing or slugging occurred; so the gas flow in this bed could be modeled by assuming two phases (bubble and particulate) with plug flow through each phase. The results from the cold model showed that the ratio of Umf for the simulated bed to Umf for the hot PFBC bed matched the conditions proposed by Glicksman’s scaling laws. The bubbles rose along the bed with axial and lateral movements (moving both towards and from the wall), and erupted from the bed surface evenly and randomly at different locations. Two patterns of particle movement were observed in the cold model bed: a circular pattern near the top section, and a rising and falling pattern dominating the particle movement in the lower section created by the rising bubbles.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In