Full Content is available to subscribers

Subscribe/Learn More  >

ECCS Operability With One or More Subsystem(s) Inoperable

[+] Author Affiliations
Stephen R. Swantner, James D. Andrachek

Westinghouse Electric Company, Pittsburgh, PA

Paper No. ICONE10-22307, pp. 517-522; 6 pages
  • 10th International Conference on Nuclear Engineering
  • 10th International Conference on Nuclear Engineering, Volume 4
  • Arlington, Virginia, USA, April 14–18, 2002
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-3598-7 | eISBN: 0-7918-3589-8
  • Copyright © 2002 by ASME


Plant Technical Specifications are issued by the US NRC to ensure that safe nuclear power plant operation is maintained within the assumptions for parameters and Structures, Systems, and Components (SSCs) made in the plant safety analysis reports. The Technical Specifications are made up of Limiting Conditions for Operation (LCOs), which are the minimum set of requirements that must be met based on the assumptions of the safety analysis, Actions, which are the remedial or compensatory actions that must be taken if the LCO is not met, and Surveillance Requirements, that demonstrate that the LCO is met. The Technical Specification Actions contain Completion Times (CTs) which are the time within which remedial actions must be taken, in the event that the LCO is not met. The Improved Standard Technical Specifications (ISTS) for Westinghouse plants are contained in NUREG-1431, Revision 2. Condition A of Technical Specification 3.5.2 (ECCS- Operating) in NUREG-1431, Revision 2, allows components to be taken out of service for up to 72 hours, as long as 100% of the ECCS flow equivalent to a single Operable ECCS train exists. Condition A would allow, for example, the A train low head safety injection (LHSI) and the B train high head safety injection (HHSI) pumps to be taken out of service (for 72 hours) as long as it could be demonstrated that the remaining components could provide 100% train equivalent flow capacity. The “cross-training” allowed by this Condition in the ISTS provides flexibility when performing routine pre-planned preventive maintenance and testing, as well as during emergent corrective maintenance and testing associated with random component inoperabilities. Without this flexibility, a unit would have to initiate a plant shutdown within 1 hour, if component(s) were inoperable in different trains. In order to implement this flexibility, the various combinations of components in opposite trains must be evaluated to determine whether 100% of the ECCS flow equivalent to a single Operable ECCS train exists with those components out of service. This evaluation ensures that the safety analysis assumption associated with one train of emergency core cooling system (ECCS) is still preserved by various combinations of components in opposite trains. An ECCS train is inoperable if it is not capable of delivering design flow to the reactor coolant system (RCS). Individual components are inoperable of they are not capable of performing their design function, or support systems are not available. Due to the redundancy of trains and the diversity of subsystems, the inoperability of one component in a train does render the ECCS incapable of performing its function. Neither does the inoperability of two different components, each in a different train, necessarily result in a loss of function for the ECCS. The intent of Condition A is to maintain a combination of components such that 100% of the ECCS flow equivalent to a single Operable ECCS train remains available. This allows increased flexibility in plant operations under circumstances when components in the required subsystem may be inoperable, but the ECCS remains capable of delivering 100% of the required flow equivalent. This paper presents a methodology for identifying the minimum set of components necessary for 100% of the ECCS flow equivalent to a single Operable ECCS train. An example of the implementation of this methodology is provided for a typical Westinghouse 3-loop ECCS design.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In